

The Role of Vascular Endothelial Growth Factor (VEGF) in Tumour Angiogenesis and Anti-Angiogenic Therapeutic Methods to Treat Cancer and Various Retinal Diseases

By Amirali Banani

In reference to: Research Paper on Anti-VEGF Treatments

What is VEGF?

- Vascular Endothelial Growth Factor
- Essential cytokine that binds to receptor tyrosine kinases on vascular endothelial cells to induce their growth and proliferation
- Promotes **angiogenesis** (the formation of new blood vessels from pre-existing ones) in response to hypoxia

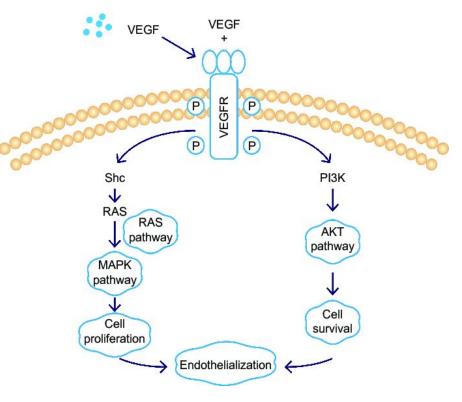


Figure 1: VEGF molecular signaling networks

VEGF Signaling Pathway

- A complex network of signaling pathways
- Focus on PLC-γ-PKC-MAPK Pathway

4 Main Steps:

- 1. VEGF-A binds to and dimerizes VEGFR1 and VEGFR2 (forming a homodimer)
- 2. Transphosphorylation of VEGFRs \rightarrow activates second messengers
- 3. Intracellular signal transduction is carried out by second messengers
- 4. Genes promoting angiogenesis are activated

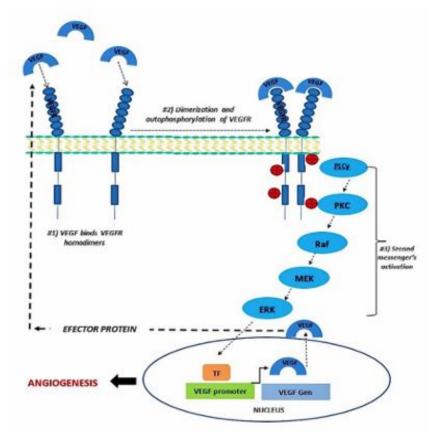


Figure 2: The PLC-γ-PKC-MAPK Pathway

Role of Angiogenesis in Tumour Growth

- Tumour cells require blood to survive
- Secrete abnormally high amounts of VEGF
- Vasculature around tumour allows for growth, expansion, and metastasis → the spread of a tumour through blood or lymph to other parts of the body
- Therapeutic goal is to deprive tumour cells of oxygen and nutrients

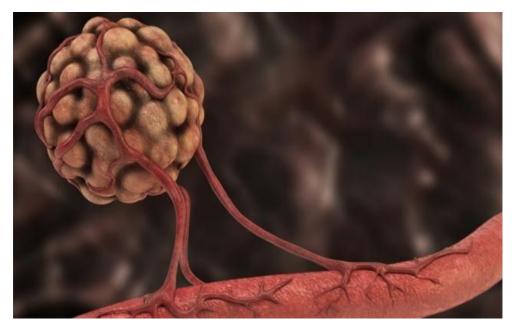


Figure 3: The formation of a tumour vasculature as a result of angiogenesis

VEGF Upregulation Factors in Tumours

- Oncogene expression, other growth factors, hypoxia, etc
- High vascular permeability causes leakage of blood
- Vasculature is suboptimal, resulting in hypoxia and an increase in HIF-1
- HIF-1 stimulates further production of VEGF, resulting in more angiogenesis
- Allows for significant growth and proliferation of tumour, and increases its metastatic potential

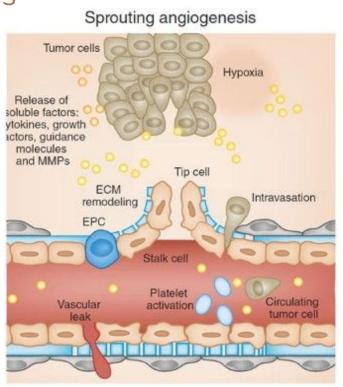


Figure 4: Factors that upregulate the secretion of VEGF

Role of VEGF in Retinal Diseases

- Hypoxia due to capillary nonperfusion (usually as a result of diabetic retinopathy) is the main cause of VEGF production in the eye

- VEGF upregulation can result in aberrant neovascularization and the breakdown of the blood-retinal barrier

- This can cause retinal diseases including:
- 1. Wet AMD due to CNV
- 2. Macular edema
- Therapeutic goal is to normalize blood flow

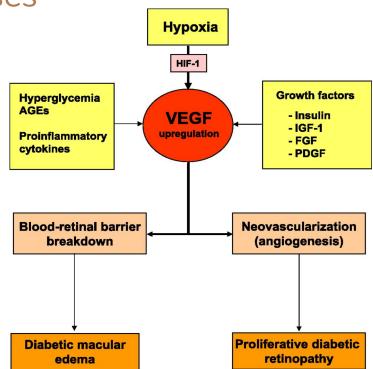


Figure 5: Involvement of VEGF in retinal diseases

Anti-Angiogenic Therapeutic Techniques & Pharmacologic Agents

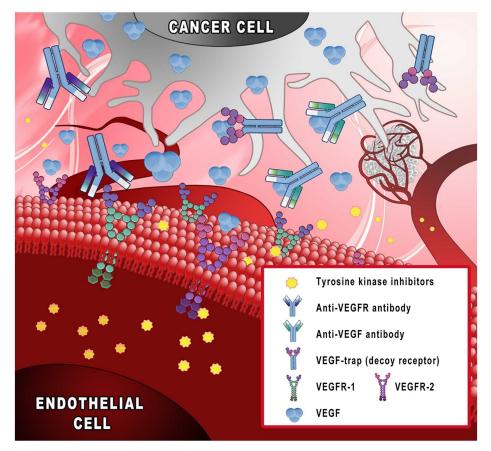
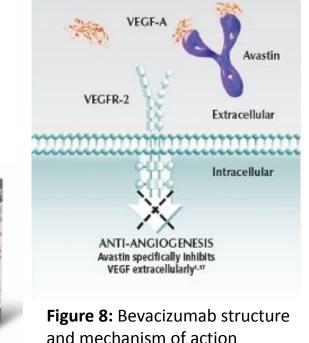


Figure 6: Anti-angiogenic therapeutic methods


1) Anti-VEGF monoclonal antibody treatment

Bevacizumab

- Full-length humanized monoclonal antibody
- Binds to circulating VEGF-A and inhibits the cytokine from binding to its receptors
- Limits and normalizes blood flow to the tumour
- Can treat metastatic colorectal cancer when combined with chemotherapeutic methods
- Sold under the brand name, Avastin®

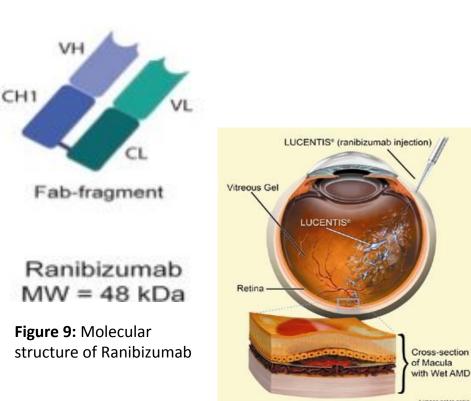


Figure 7: Avastin medication

Ranibizumab

- Recombinant humanized monoclonal antibod fragment
- Binds to all active isoforms of VEGF-A with high affinity
- Goal is to prevent neovascularization and vascular leakage
- Used to suppress the progression of retinal diseases
- Sold under the brand name, Lucentis®

" Image not to scale

Figure 10: Intravitreal injection of Ranibizumab (Lucentis[®]) to treat wet AMD

<u>Aflibercept</u>

- Soluble decoy receptor
- Binds to VEGF-A, VEGF-B and PIGF with higher affinity than the cytokines' natural receptors
- Prevents highly permeable blood vessels from forming under retina
- Also effective against metastatic colorectal cancer when combined with chemotherapy

- Sold under the brand names, Eylea[®] & Zaltrap[®]

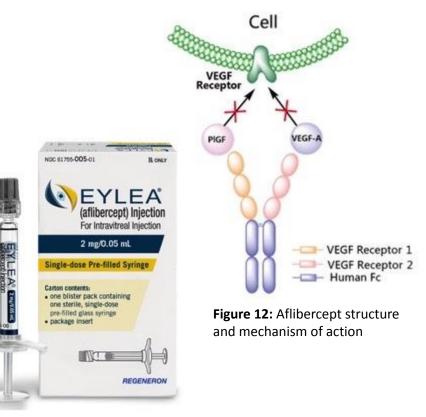


Figure 11: Eylea[®] medication (for intravitreal injection)

2) Tyrosine Kinase Inhibitors

- Suppress the signal transduction networks of protein kinases
- Sunitinib, Sorafenib and Pazopanib \rightarrow TKIs approved for the treatment of patients with advanced cancer
- All follow the same mechanism of action:
- Competitively bind to catalytic binding sites of TKs \rightarrow inhibition of autophosphorylation \rightarrow no activation of intracellular signal transduction pathway \rightarrow no angiogenic factors transcribed \rightarrow suppression of angiogenesis

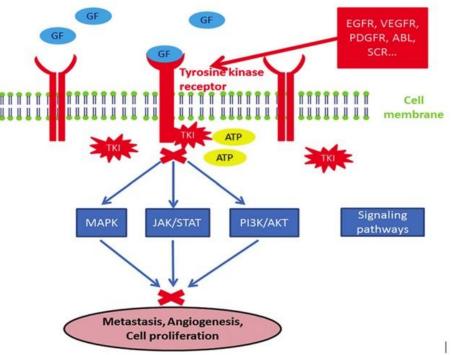


Figure 13: Tyrosine kinase inhibitor mechanism of action

Other Potential Therapeutics

- Anti-VEGFR antibodies \rightarrow antibodies that block VEGF Receptors on vascular endothelial cells

- Second messenger inhibitors \rightarrow molecules that inhibit the phosphorylation of second messengers and thus suppress intracellular signal transduction

 VEGF gene inhibitors → molecules that inhibit the expression of the VEGF gene in tumour cells and thus prevent the synthesis and secretion of VEGF

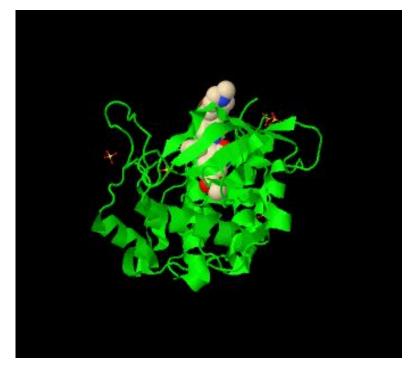


Figure 14: VEGF-VEGFR Complex in 3D